顺序管道块

[~modular_pipelines.SequentialPipelineBlocks] 是一种多块类型,它将其他 [~modular_pipelines.ModularPipelineBlocks] 按顺序组合在一起。数据通过 intermediate_inputsintermediate_outputs 线性地从一个块流向下一个块。[~modular_pipelines.SequentialPipelineBlocks] 中的每个块通常代表管道中的一个步骤,通过组合它们,您逐步构建一个管道。

本指南向您展示如何将两个块连接成一个 [~modular_pipelines.SequentialPipelineBlocks]。

创建两个 [~modular_pipelines.ModularPipelineBlocks]。第一个块 InputBlock 输出一个 batch_size 值,第二个块 ImageEncoderBlock 使用 batch_size 作为 intermediate_inputs

```py from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam class InputBlock(ModularPipelineBlocks): @property def inputs(self): return [ InputParam(name="prompt", type_hint=list, description="list of text prompts"), InputParam(name="num_images_per_prompt", type_hint=int, description="number of images per prompt"), ] @property def intermediate_outputs(self): return [ OutputParam(name="batch_size", description="calculated batch size"), ] @property def description(self): return "A block that determines batch_size based on the number of prompts and num_images_per_prompt argument." def __call__(self, components, state): block_state = self.get_block_state(state) batch_size = len(block_state.prompt) block_state.batch_size = batch_size * block_state.num_images_per_prompt self.set_block_state(state, block_state) return components, state ``` ```py import torch from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam class ImageEncoderBlock(ModularPipelineBlocks): @property def inputs(self): return [ InputParam(name="image", type_hint="PIL.Image", description="raw input image to process"), InputParam(name="batch_size", type_hint=int), ] @property def intermediate_outputs(self): return [ OutputParam(name="image_latents", description="latents representing the image" ] @property def description(self): return "Encode raw image into its latent presentation" def __call__(self, components, state): block_state = self.get_block_state(state) # 模拟处理图像 # 这将改变所有块的图像状态,从PIL图像变为张量 block_state.image = torch.randn(1, 3, 512, 512) block_state.batch_size = block_state.batch_size * 2 block_state.image_latents = torch.randn(1, 4, 64, 64) self.set_block_state(state, block_state) return components, state ```

通过定义一个[InsertableDict]来连接两个块,将块名称映射到块实例。块按照它们在blocks_dict中注册的顺序执行。

使用[~modular_pipelines.SequentialPipelineBlocks.from_blocks_dict]来创建一个[~modular_pipelines.SequentialPipelineBlocks]。

from diffusers.modular_pipelines import SequentialPipelineBlocks, InsertableDict

blocks_dict = InsertableDict()
blocks_dict["input"] = input_block
blocks_dict["image_encoder"] = image_encoder_block

blocks = SequentialPipelineBlocks.from_blocks_dict(blocks_dict)

通过调用blocks来检查[~modular_pipelines.SequentialPipelineBlocks]中的子块,要获取更多关于输入和输出的详细信息,可以访问docs属性。

print(blocks)
print(blocks.doc)