T-GATE

T-GATE accelerates inference for Stable Diffusion, PixArt, and Latency Consistency Model pipelines by skipping the cross-attention calculation once it converges. This method doesn’t require any additional training and it can speed up inference from 10-50%. T-GATE is also compatible with other optimization methods like DeepCache.

Before you begin, make sure you install T-GATE.

pip install tgate
pip install -U torch diffusers transformers accelerate DeepCache

To use T-GATE with a pipeline, you need to use its corresponding loader.

Pipeline T-GATE Loader
PixArt TgatePixArtLoader
Stable Diffusion XL TgateSDXLLoader
Stable Diffusion XL + DeepCache TgateSDXLDeepCacheLoader
Stable Diffusion TgateSDLoader
Stable Diffusion + DeepCache TgateSDDeepCacheLoader

Next, create a TgateLoader with a pipeline, the gate step (the time step to stop calculating the cross attention), and the number of inference steps. Then call the tgate method on the pipeline with a prompt, gate step, and the number of inference steps.

Let’s see how to enable this for several different pipelines.

Accelerate `PixArtAlphaPipeline` with T-GATE: ```py import torch from diffusers import PixArtAlphaPipeline from tgate import TgatePixArtLoader pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) gate_step = 8 inference_step = 25 pipe = TgatePixArtLoader( pipe, gate_step=gate_step, num_inference_steps=inference_step, ).to("cuda") image = pipe.tgate( "An alpaca made of colorful building blocks, cyberpunk.", gate_step=gate_step, num_inference_steps=inference_step, ).images[0] ``` Accelerate `StableDiffusionXLPipeline` with T-GATE: ```py import torch from diffusers import StableDiffusionXLPipeline from diffusers import DPMSolverMultistepScheduler from tgate import TgateSDXLLoader pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) gate_step = 10 inference_step = 25 pipe = TgateSDXLLoader( pipe, gate_step=gate_step, num_inference_steps=inference_step, ).to("cuda") image = pipe.tgate( "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", gate_step=gate_step, num_inference_steps=inference_step ).images[0] ``` Accelerate `StableDiffusionXLPipeline` with [DeepCache](https://github.com/horseee/DeepCache) and T-GATE: ```py import torch from diffusers import StableDiffusionXLPipeline from diffusers import DPMSolverMultistepScheduler from tgate import TgateSDXLDeepCacheLoader pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) gate_step = 10 inference_step = 25 pipe = TgateSDXLDeepCacheLoader( pipe, cache_interval=3, cache_branch_id=0, ).to("cuda") image = pipe.tgate( "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", gate_step=gate_step, num_inference_steps=inference_step ).images[0] ``` Accelerate `latent-consistency/lcm-sdxl` with T-GATE: ```py import torch from diffusers import StableDiffusionXLPipeline from diffusers import UNet2DConditionModel, LCMScheduler from diffusers import DPMSolverMultistepScheduler from tgate import TgateSDXLLoader unet = UNet2DConditionModel.from_pretrained( "latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16", ) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16", ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) gate_step = 1 inference_step = 4 pipe = TgateSDXLLoader( pipe, gate_step=gate_step, num_inference_steps=inference_step, lcm=True ).to("cuda") image = pipe.tgate( "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", gate_step=gate_step, num_inference_steps=inference_step ).images[0] ```

T-GATE also supports [StableDiffusionPipeline] and PixArt-alpha/PixArt-LCM-XL-2-1024-MS.

Benchmarks

| Model | MACs | Param | Latency | Zero-shot 10K-FID on MS-COCO | |———————–|———-|———–|———|—————————| | SD-1.5 | 16.938T | 859.520M | 7.032s | 23.927 | | SD-1.5 w/ T-GATE | 9.875T | 815.557M | 4.313s | 20.789 | | SD-2.1 | 38.041T | 865.785M | 16.121s | 22.609 | | SD-2.1 w/ T-GATE | 22.208T | 815.433 M | 9.878s | 19.940 | | SD-XL | 149.438T | 2.570B | 53.187s | 24.628 | | SD-XL w/ T-GATE | 84.438T | 2.024B | 27.932s | 22.738 | | Pixart-Alpha | 107.031T | 611.350M | 61.502s | 38.669 | | Pixart-Alpha w/ T-GATE | 65.318T | 462.585M | 37.867s | 35.825 | | DeepCache (SD-XL) | 57.888T | - | 19.931s | 23.755 | | DeepCache w/ T-GATE | 43.868T | - | 14.666s | 23.999 | | LCM (SD-XL) | 11.955T | 2.570B | 3.805s | 25.044 | | LCM w/ T-GATE | 11.171T | 2.024B | 3.533s | 25.028 | | LCM (Pixart-Alpha) | 8.563T | 611.350M | 4.733s | 36.086 | | LCM w/ T-GATE | 7.623T | 462.585M | 4.543s | 37.048 |

The latency is tested on an NVIDIA 1080TI, MACs and Params are calculated with calflops, and the FID is calculated with PytorchFID.