SkyReels-V2 by the SkyReels Team from Skywork AI.
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs’ inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at this https URL.
You can find all the original SkyReels-V2 checkpoints under the Skywork organization.
The following SkyReels-V2 models are supported in Diffusers:
[!TIP] Click on the SkyReels-V2 models in the right sidebar for more examples of video generation.
The example below has the following parameters:
base_num_frames=97num_frames=97num_inference_steps=30ar_step=5causal_block_size=5With vae_scale_factor_temporal=4, expect 5 blocks of 5 frames each as calculated by:
num_latent_frames: (97-1)//vae_scale_factor_temporal+1 = 25 frames -> 5 blocks of 5 frames each
And the maximum context length in the latent space is calculated with base_num_latent_frames:
base_num_latent_frames = (97-1)//vae_scale_factor_temporal+1 = 25 -> 25//5 = 5 blocks
Asynchronous Processing Timeline:
┌─────────────────────────────────────────────────────────────────┐
│ Steps: 1 6 11 16 21 26 31 36 41 46 50 │
│ Block 1: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 2: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 3: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 4: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 5: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└─────────────────────────────────────────────────────────────────┘
For Long Videos (num_frames > base_num_frames):
base_num_frames acts as the “sliding window size” for processing long videos.
Example: 257-frame video with base_num_frames=97, overlap_history=17
┌──── Iteration 1 (frames 1-97) ────┐
│ Processing window: 97 frames │ → 5 blocks,
│ Generates: frames 1-97 │ async processing
└───────────────────────────────────┘
┌────── Iteration 2 (frames 81-177) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (81-97) from prev │ → 5 blocks,
│ Generates: frames 98-177 │ async processing
└─────────────────────────────────────────┘
┌────── Iteration 3 (frames 161-257) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (161-177) from prev │ → 5 blocks,
│ Generates: frames 178-257 │ async processing
└──────────────────────────────────────────┘
Each iteration independently runs the asynchronous processing with its own 5 blocks.
base_num_frames controls:
base_num_latent_frames // causal_block_size)Each block takes 30 steps to complete denoising.
Block N starts at step: 1 + (N-1) x ar_step
Total steps: 30 + (5-1) x 5 = 50 steps
Synchronous mode (ar_step=0) would process all blocks/frames simultaneously:
┌──────────────────────────────────────────────┐
│ Steps: 1 ... 30 │
│ All blocks: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└──────────────────────────────────────────────┘
Total steps: 30 steps
An example on how the step matrix is constructed for asynchronous processing:
Given the parameters: (num_inference_steps=30, flow_shift=8, num_frames=97, ar_step=5, causal_block_size=5)
- num_latent_frames = (97 frames - 1) // (4 temporal downsampling) + 1 = 25
- step_template = [999, 995, 991, 986, 980, 975, 969, 963, 956, 948,
941, 932, 922, 912, 901, 888, 874, 859, 841, 822,
799, 773, 743, 708, 666, 615, 551, 470, 363, 216]
The algorithm creates a 50x25 step_matrix where:
- Row 1: [999×5, 999×5, 999×5, 999×5, 999×5]
- Row 2: [995×5, 999×5, 999×5, 999×5, 999×5]
- Row 3: [991×5, 999×5, 999×5, 999×5, 999×5]
- ...
- Row 7: [969×5, 995×5, 999×5, 999×5, 999×5]
- ...
- Row 21: [799×5, 888×5, 941×5, 975×5, 999×5]
- ...
- Row 35: [ 0×5, 216×5, 666×5, 822×5, 901×5]
- ...
- Row 42: [ 0×5, 0×5, 0×5, 551×5, 773×5]
- ...
- Row 50: [ 0×5, 0×5, 0×5, 0×5, 216×5]
Detailed Row 6 Analysis:
- step_matrix[5]: [ 975×5, 999×5, 999×5, 999×5, 999×5]
- step_index[5]: [ 6×5, 1×5, 0×5, 0×5, 0×5]
- step_update_mask[5]: [True×5, True×5, False×5, False×5, False×5]
- valid_interval[5]: (0, 25)
Key Pattern: Block i lags behind Block i-1 by exactly ar_step=5 timesteps, creating the
staggered “diffusion forcing” effect where later blocks condition on cleaner earlier blocks.
The example below demonstrates how to generate a video from text.
The example below demonstrates how to use the image-to-video pipeline to generate a video using a text description, a starting frame, and an ending frame.
~loaders.SkyReelsV2LoraLoaderMixin.load_lora_weights].SkyReelsV2Pipeline and SkyReelsV2ImageToVideoPipeline are also available without Diffusion Forcing framework applied.
[[autodoc]] SkyReelsV2DiffusionForcingPipeline
[[autodoc]] SkyReelsV2DiffusionForcingImageToVideoPipeline
[[autodoc]] SkyReelsV2DiffusionForcingVideoToVideoPipeline
[[autodoc]] SkyReelsV2Pipeline
[[autodoc]] SkyReelsV2ImageToVideoPipeline
[[autodoc]] pipelines.skyreels_v2.pipeline_output.SkyReelsV2PipelineOutput