PRX generates high-quality images from text using a simplified MMDIT architecture where text tokens don’t update through transformer blocks. It employs flow matching with discrete scheduling for efficient sampling and uses Google’s T5Gemma-2B-2B-UL2 model for multi-language text encoding. The ~1.3B parameter transformer delivers fast inference without sacrificing quality. You can choose between Flux VAE (8x compression, 16 latent channels) for balanced quality and speed or DC-AE (32x compression, 32 latent channels) for latent compression and faster processing.
PRX offers multiple variants with different VAE configurations, each optimized for specific resolutions. Base models excel with detailed prompts, capturing complex compositions and subtle details. Fine-tuned models trained on the Alchemist dataset improve aesthetic quality, especially with simpler prompts.
| Model | Resolution | Fine-tuned | Distilled | Description | Suggested prompts | Suggested parameters | Recommended dtype | |
|---|---|---|---|---|---|---|---|---|
Photoroom/prx-256-t2i |
256 | No | No | Base model pre-trained at 256 with Flux VAE | Works best with detailed prompts in natural language | 28 steps, cfg=5.0 | torch.bfloat16 |
|
Photoroom/prx-256-t2i-sft |
512 | Yes | No | Fine-tuned on the Alchemist dataset dataset with Flux VAE | Can handle less detailed prompts | 28 steps, cfg=5.0 | torch.bfloat16 |
|
Photoroom/prx-512-t2i |
512 | No | No | Base model pre-trained at 512 with Flux VAE | Works best with detailed prompts in natural language | 28 steps, cfg=5.0 | torch.bfloat16 |
|
Photoroom/prx-512-t2i-sft |
512 | Yes | No | Fine-tuned on the Alchemist dataset dataset with Flux VAE | Can handle less detailed prompts in natural language | 28 steps, cfg=5.0 | torch.bfloat16 |
|
Photoroom/prx-512-t2i-sft-distilled |
512 | Yes | Yes | 8-step distilled model from Photoroom/prx-512-t2i-sft |
Can handle less detailed prompts in natural language | 8 steps, cfg=1.0 | torch.bfloat16 |
|
Photoroom/prx-512-t2i-dc-ae |
512 | No | No | Base model pre-trained at 512 with Deep Compression Autoencoder (DC-AE) | Works best with detailed prompts in natural language | 28 steps, cfg=5.0 | torch.bfloat16 |
|
Photoroom/prx-512-t2i-dc-ae-sft |
512 | Yes | No | Fine-tuned on the Alchemist dataset dataset with Deep Compression Autoencoder (DC-AE) | Can handle less detailed prompts in natural language | 28 steps, cfg=5.0 | torch.bfloat16 |
|
Photoroom/prx-512-t2i-dc-ae-sft-distilled |
512 | Yes | Yes | 8-step distilled model from Photoroom/prx-512-t2i-dc-ae-sft-distilled |
Can handle less detailed prompts in natural language | 8 steps, cfg=1.0 | torch.bfloat16 |
s |
Refer to this collection for more information.
Load the pipeline with [~DiffusionPipeline.from_pretrained].
from diffusers.pipelines.prx import PRXPipeline
# Load pipeline - VAE and text encoder will be loaded from HuggingFace
pipe = PRXPipeline.from_pretrained("Photoroom/prx-512-t2i-sft", torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A front-facing portrait of a lion the golden savanna at sunset."
image = pipe(prompt, num_inference_steps=28, guidance_scale=5.0).images[0]
image.save("prx_output.png")
Load components individually to customize the pipeline for instance to use quantized models.
import torch
from diffusers.pipelines.prx import PRXPipeline
from diffusers.models import AutoencoderKL, AutoencoderDC
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from transformers import T5GemmaModel, GemmaTokenizerFast
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as BitsAndBytesConfig
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
# Load transformer
transformer = PRXTransformer2DModel.from_pretrained(
"checkpoints/prx-512-t2i-sft",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
# Load scheduler
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
"checkpoints/prx-512-t2i-sft", subfolder="scheduler"
)
# Load T5Gemma text encoder
t5gemma_model = T5GemmaModel.from_pretrained("google/t5gemma-2b-2b-ul2",
quantization_config=quant_config,
torch_dtype=torch.bfloat16)
text_encoder = t5gemma_model.encoder.to(dtype=torch.bfloat16)
tokenizer = GemmaTokenizerFast.from_pretrained("google/t5gemma-2b-2b-ul2")
tokenizer.model_max_length = 256
# Load VAE - choose either Flux VAE or DC-AE
# Flux VAE
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev",
subfolder="vae",
quantization_config=quant_config,
torch_dtype=torch.bfloat16)
pipe = PRXPipeline(
transformer=transformer,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae
)
pipe.to("cuda")
For memory-constrained environments:
import torch
from diffusers.pipelines.prx import PRXPipeline
pipe = PRXPipeline.from_pretrained("Photoroom/prx-512-t2i-sft", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload() # Offload components to CPU when not in use
# Or use sequential CPU offload for even lower memory
pipe.enable_sequential_cpu_offload()
[[autodoc]] PRXPipeline
[[autodoc]] pipelines.prx.pipeline_output.PRXPipelineOutput