We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models.
For more details, please refer to the comprehensive LongCat-Image Technical Report
import torch
import diffusers
from diffusers import LongCatImagePipeline
weight_dtype = torch.bfloat16
pipe = LongCatImagePipeline.from_pretrained("meituan-longcat/LongCat-Image", torch_dtype=torch.bfloat16 )
pipe.to('cuda')
# pipe.enable_model_cpu_offload()
prompt = '一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。镜头采用中距离视角,突出她的神态和服饰的细节。光线柔和地打在她的脸上,强调她的五官和饰品的质感,增加画面的层次感与亲和力。整个画面构图简洁,砖墙的纹理与阳光的光影效果相得益彰,突显出人物的优雅与从容。'
image = pipe(
prompt,
height=768,
width=1344,
guidance_scale=4.0,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.Generator("cpu").manual_seed(43),
enable_cfg_renorm=True,
enable_prompt_rewrite=True,
).images[0]
image.save(f'./longcat_image_t2i_example.png')
This pipeline was contributed by LongCat-Image Team. The original codebase can be found here.
Available models:
| Models | Type | Description | Download Link |
|---|---|---|---|
| LongCat‑Image | Text‑to‑Image | Final Release. The standard model for out‑of‑the‑box inference. | 🤗 Huggingface |
| LongCat‑Image‑Dev | Text‑to‑Image | Development. Mid-training checkpoint, suitable for fine-tuning. | 🤗 Huggingface |
| LongCat‑Image‑Edit | Image Editing | Specialized model for image editing. | 🤗 Huggingface |
[[autodoc]] LongCatImagePipeline
[[autodoc]] pipelines.longcat_image.pipeline_output.LongCatImagePipelineOutput